

BS 536 STUDIES ON TALL BUILDINGS: DESIGN CONSIDERATIONS Spring 2016-2017

Case Study: Neva Tower 2

by Buğra Tascı

Submitted to: Assoc.Prof.Dr. Mehmet Halis Günel Assist.Prof.Dr. Bekir Özer Ay

Neva Tower 2

Case Study: **Neva Tower 2** by Buğra Taşçı Submitted to: Günel, Ay – Spring 2017

Official Name: Neva Tower Other Name: Plot 17-18 Construction Start / Expected End Date: 2013-2020[1] Location: Russia, Moscow Structural & Architectural Height: 338 m[1] Aspect Ratio: 11
Number of Floor: 77+4 (above ground + under ground) [1]
Building Function: Residential Status: Under Construction Architecture: FXFOWLE; SPEECH; HOK Inc. [1] Structural Engineering: Halvarson and Partners[1] Main Contractor: Renaissance Construction Company^[1] Structural Material: Reinforced Concrete Structural System: Outriggered Frame System

Location

- *Before construction began, the area had been an old stone quarry where most of buildings were old factories
- and industrial complexes that had been closed or abandoned. [1]

 *This area will become the first zone in Russia to combine business activity, living space and entertainment. [1]

Green Garden

One of the strongest characteristic of the Project is its over 8,000 sq. m of green garden, including walking, entertainment and leisure zones. [1

Figure 3: 3D view from conceptual design studies

ation modified by K. Buğra TASCI [2]

The structural coadept of two towers generally similar – both tower utilize reinforced concrete wall surround the core elements with reinforced and post-tensioned concrete floor framing, [1]
 Providing the outriggers greatly relieves forces on the core wall, allows the core to be more slender and more efficient within the floor plate, and minimize total material usage, [1]

•70% maximum displacement reduction can be achieved by providing the first outrigger at the 30th level and the second outrigger and at the 50th level of the structure. ^[1]
•The top outrigger system is designed for not only lateral stiffness, but also has very critical role in ogressive collapse scenarios. [1]

Adjacent columns are

assumed to hi

Inc.(RWDI) was retained by Halvorson and Partners, P.C. To study wind loading on the proposed Residential and Office Tower of the Renaissance Mixed-Use Development on Plot 17-18 in Moscow, *1:400 scale model [1]

•Every 5 floors with 33 sensors is about 1,060 in the model. [1]

Foundation

Figure 11: Pile and structure plan drawn by K. Buğra TAŞÇI [2]

The piles and rait foundation were proposed for sharing of load between the piles and rock substrata. The diameter of the piles is 1500 mm with 18 m length, $^{\rm Dl}$ = 135 piles were applied in 2000 sq. m raft foundation, $^{\rm Dl}$

Progressive Collapse Case Study

collapse include removal of one perimeter column, some part of the core wall and 100 sq. m slab area with loss of one tendon in the post tension slab. [1]
•The outrigger and belt wall system are very effective to keep the rest of the structural elements safe after removing elements in progressive collapse

Column removed

Construction Photos

References

- CTBUH, Skyscrapercity
- Retrieved from http://www.speech.su/projects/multifunctional_and_office_col
- Renaissance Construction
 CTBUH Research Paper: Tall Building Design in Moscow City, CTBUH 2016 Shenzhen, Guangzhou, Hong